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Abstract

Empirical Study of Connected Vehicle Data and Its Application to Traffic Measurement

by

Jared Mitchell Porter

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Kameshwar Poolla, Chair

Connected Vehicle data is an emerging technology that offers to broadly measure traffic at a
scope not accessible with traditional traffic measurement systems. Using GPS and vehicles
onboard data, we can gain a broader perspective of traffic. The current adoption rate of
connected vehicles is near 2-3 percent, but offers wide-area coverage. The resulting sparsity
of data offers new challenges in extracting useful measures of the traffic state. This work
focuses on an empirical study of available connected vehicle data collected from the San
Francisco and Los Angeles areas. We explore how the penetration rate of connected vehi-
cles in these areas influence the fidelity of extracted traffic flow measurements. Leveraging
the accuracy of the GPS samples, we explore separating data into lane-level distinctions.
We developed penetration rate agnostic estimates of queue length distributions at intersec-
tions. Utilizing the repeatability of timed intersections, we derive spatiotemporal diagrams
of a major throughway and connect them to a macroscopic fundamental diagram. Finally,
we explore new accident risk calculations based on extracted maneuver level information.
Connected vehicle data offers new and exciting insights that will continue to improve with
increased penetration rate.
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Chapter 1

Introduction

Traffic Congestion and Safety Impact

Transit is an integral part of society serving as the backbone of an economy moving peo-
ple and resources around. As populations and economies grow and expand, the need to
understand and optimize the road network is clear. A consultant report from Centre for
Economics and Business Research [50] estimated the cost of road congestion. The study
reports the road congestion cost for the US in 2013 as $124 billion through increases in fuel,
emissions,and time and an indirect increase in the price of goods. Further, it projects a 50%
increase in costs by 2030 resulting in a cumulative cost of $2.8 trillion over 17 years. It is
evident that the road network fails to meet traffic demand.

A survey conducted by U.S. Travel Association measures the impact of congestion on travel
demand [29]. In 2018, Americans avoided an estimated 47.5 million road trips due to traffic
congestion. Moreover, infrastructure investment is popular with travelers. A majority of
travelers share willingness to pay more for less traffic.

The other major concern found among travelers was improvement to safety. In 2010, mo-
tor vehicles crashes incurred an economic cost of $242 billion and resulted in 33 thousand
fatalities [9]. Cities today are adopting the Vision Zero philosophy. Vision Zero promotes
improving the traffic network with a systems approach with the ultimate goal of reducing
traffic fatalities and severe injuries to zero [1].

Why do We measure Traffic/Applications

In order to improve safety and mitigate congestion data must be collected and analyzed to
understand where and how traffic infrastructure can be targeted. Data gathered is used
to create and calibrate models that in turn predict how individuals and traffic behave as a
whole. There are many applications of these models.

In traffic control, highway ramp meter and intersection signals are optimized to maximize
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flow or prevent jams [44] [15] [40]. Economic externalities of congestion can be modeled and
reflected in dynamic pricing of tolls[57] [33]. Knowing the traffic state and demand can be
used to optimally plan routes for individuals or globally. [58]

In planning, different road designs can be simulated to understand the impact of each design
[34]. Data collected long-term reveals daily demand patterns, congestion bottlenecks, or
accident prone areas. Modeling of demand can help to optimize the location of transportation
services [62]. The more data available, the more accurate and useful our models are.

Traffic Models

Traffic flow is generally broken up into microscopic and macroscopic levels of aggregation.

Microscopic models focus on characterizing individual behavior, describing how vehicles ac-
celerate,brake, or change lanes. A widely used microscopic model is the Intelligent Driver
Model (IDM) [53]. IDM models the acceleration of a vehicle as a differential equation de-
pendent on the spatial and velocity gap of the car in front. These models tune a variety of
parameters that summarize individual drivers. Parameters of IDM include maximum accel-
eration, comfortable deceleration, minimum gap distance, safe headway time, and desired
velocity.

Car following models can be tuned by measuring traffic and then in turn be used to create
more accurate simulations. Typically traffic simulations will employ multiple agent types
with a specifically tuned car following model creating a heterogeneous make-up of traffic.
Simulations also employ probability distributions that model user choices or routing [34].
Measurement of demand patterns over time build accurate distributions for modeling agent
choices.

Macroscopic models aim to model larger scale traffic metrics that arise from the aggregate
flow of many agents. Most macroscopic models reference the fundamental diagram of section
of road. The fundamental diagram describes for a point in the road the relation of traffic
flow (q - number of cars per unit of time), with traffic density (k - the number of cars per
unit distance). It can also be described as the relationship of traffic velocity v with traffic
density where all 3 metrics are related via the equation: q(k) = kv(k).

Lighthill-Whitham-Richards models or first order models combine the fundamental diagram,
where flow and speed are dependent on density, with a continuity equation to get a wave
equation for traffic density[31][54][19]. These models can be used to predict the development
of traffic waves and how traffic flow changes over space and time.

Studying macroscopic models involves collecting observations of traffic flow, density, speed,
and waves.
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Traditional Traffic Data Sources

One of the difficulties of studying traffic is obtaining high quality data that holds of complete
picture of the traffic state. A complete state would involve knowing the position, velocity,
acceleration of every vehicle on the road as well other factors like pedestrian and traffic signal
states. One of the most complete measurements of traffic state involves recording the road
from a high vantage point and analyzing the video feed. These cameras can be permanent
installations mounted on buildings, intersection lights, or freeway signs. They are mainly
used in more temporary surveying work [7] [39].

Problems with cameras involve their difficult installation and maintenance as well as the large
amounts of data and processing required. Video data consumes large amounts of storage
and processing can be a labor intensive endeavour. New AI techniques have been developed
to automate the analysis of video. Such techniques were used with the Pnuema dataset [7]
and by Street Simplified which conducts video surveys of intersection performance. Still, AI
requires tuning and manual verification.

Stationary detectors are inductive loops buried in ground that detect when a vehicle is over
them. They can be used to collect flow, density, and speed information at a single point in
the road. Detectors are expensive to install and maintain. Thus they are generally reserved
for select locations of interest [8] [11].

To get samples of the broader network, traditionally, probe vehicles were outfitted to record
speed and position. These probe vehicle could be a set of taxis or specifically outfitted test
vehicles. Cell phone data offers an opportunity for a broad view into the traffic network.
The near ubiquitous ownership of a smartphone means everyone is carrying a GPS on hand.
Unfortunately the availability of cell phone data is very limited or expensive to obtain.

Connected Vehicle Data

Connected vehicle data is an emerging technology that collects data from vehicles trans-
mitting onboard computer data. Connected vehicles (CVs) report GPS traces, speedometer
readings, acceleration, heading, and more. CV technology is equipped in modern consumer
vehicles and so provide a very general sample of traffic on the network. The level of coverage
is ideal for traffic state estimation whose fidelity will only increase with higher adoption.
The technology also scales well as more connected vehicles on the road only requires scaling
for the higher data volume.

CV data is readily available as aggregators have created a business model of packaging
this data and reselling it. Wejo Group Ltd. and Otonomo Technologies Ltd are two such
companies with $85M and $58M market caps. Although currently the sample of total vehicles
on the road is low, the data available now is shown to be valuable in measuring traffic.
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Thesis Outline

Partnered with Sensys, Inc, they obtained samples of connected vehicle data from Wejo Ltd.
to analyze. This thesis highlights the results from analyzing these CV samples.

In Chapter 2, we describe the sample dataset and all the supporting datasets we use.

In Chapter 3 we explore the penetration rate of CVs and the effectiveness of linear projection
for flow estimation.

In Chapter 4, we develop an algorithm for assigning CV traces to lanes.

In Chapter 5, we propose an estimation for queue length that is agnostic to the penetration
rate.

In Chapter 6, we explore recovering a spatiotemporal diagram from sparse trajectories and
relate back to a measurement of the Macroscopic Fundamental Diagram.

Lastly in Chapter 7, we present the results from measuring maneuver level risk at intersec-
tions.



5

Chapter 2

Description of Datasets

This work analyzes data obtained from connected vehicles. To confer with CV results we
also rely on some support detector datasets. We also explore a new way on analyzing traffic
accident data combining cv data with an accident database. This chapter offers a description
of all datasets used in this work.

2.1 Wejo Connected Vehicle Dataset

The focus of this work is centered around connected vehicle datasets fromWejo Ltd. provided
by Sensys Networks Inc.

Wejo collects GPS trace measurements of connected vehicles along with data recorded by
the vehicle’s onboard computer. Wejo forms contracts with car manufacturers to obtain
this data. Their sample sets mainly contain the data of recently manufactured vehicles by
General Motors(GM).

At various price points Wejo differentiates data products based of what information they
report and granularity of data. We obtained 3 different samples.

� September 2019 - November 2019: Vehicle Trace Dataset along the corridors of CA-107
and CA-1 in the southwest corner of Los Angeles County

� September 2021: Vehicle Trace Dataset covering San Francisco County.

� April 2021 - October 2021: 15-minute Aggregated Dataset covering San Francisco
County, southwest Los Angeles County, Sacramento County, and the City of Arcadia.
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Trace Dataset

Vehicle measurements are provided at a sampling time of 3 seconds. Each vehicle is equipped
with ”enhanced” GPS and by Wejo’s claims provides latitude/longitude coordinates with
95% accuracy within a 3m radius. This should enable some degree of lane-level analysis we
will explore in later sections. In addition to coordinates, the trace level data provides speed
readings from the vehicles speedometer and bearing relative to north.

Every point is also assigned to a unique trip identification number. Trip ids are assigned
to vehicles from key-on, ignition, to key-off. Table 2.1 shows a slice of the trace data. For
the month of September 2021, there are 930,000 individual trips recorded in San Francisco
resulting in 257 million points.

timestamp trip id latitude longitude speed heading

2021-09-14 00:00:01 464724 37.761527 -122.426034 33.6 356.7

2021-09-14 00:00:04 464724 37.761781 -122.426054 41.6 356.2

2021-09-14 00:00:07 464724 37.762105 -122.426088 43.84 356.6

Table 2.1: Slice of the trace dataset

From Figure 2.1 we see that the sampling time is fairly stable at every 3 seconds. The
dropping of samples resulting in 6 and 9 second sampling times is not significant.

The September 2021 dataset also includes the vehicle make, model, and year. Data was
mostly collected from Buick, Cadillac, Chevrolet, and GMC makes. Figure 2.2 shows the
distribution of model years. Note that 25% of vehicle information was unknown. This figure
shows that connected vehicle data is an emerging technology as most data is collected from
newer vehicles and no data from any vehicle manufactured before 2015. As the technology is
more widely adapted and older vehicles are replaced, the sample ratio of connected vehicles
to total vehicles on the road is expected to increase.

15 Minute Aggregated Dataset

A cheaper offering of connected vehicle data creates 15 minute summaries of CV’s traveling
through a specific road segment. As shown in Table 2.2 the road is partitioned into a set of
segments that generate the road network of interest. Segment traces and type identification
are consistent with edges downloaded from OpenStreetMap.

The aggregated dataset provides 15 minute summaries of each segment with the total number
of detected vehicles, average speed of samples, and the average stationary time for each vehi-
cle. In addition to the summation of trace data, the aggregated set also provides additional
count of samples where hard braking or hard acceleration are detected.
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Figure 2.1: Distribution of sampling fre-
quency taken from trips recorded in SF in
the month of September 2021

Figure 2.2: Distribution of vehicle’s model
year in the connected vehicle trace dataset.

seg id seg road name seg type seg heading seg len miles seg trace

6812 divisadero street Secondary 350.875671 0.063723 {geojson}
6813 jackson street Residential 262.798843 0.091249 {geojson}
6814 fillmore street Tertiary 168.618691 0.016214 {geojson}

Table 2.2: Slice of segment description table

seg id timestamp car count avg speed avg stat time hard accel hard brake

1000 2021-04-04 10:00:00 35 55.4 0.0 0 0

1000 2021-04-04 10:15:00 25 55.8 0.0 0 0

1000 2021-04-04 10:30:00 35 52.6 0.0 0 0

Table 2.3: Slice of segment level aggregation

Figure 2.3 illustrates the break down of segment type by total number and miles in the city
of SF. Figure 2.4 shows the breakdown of traffic flow by segment type. As expected, major
through-ways make up the least number of segments but account for the majority of flow.

Snapshot Comparison

Figure 2.5 and 2.6 illustrate snapshots of the summarized aggregate dataset and the trace
datasets. In figure 2.5 segments are highlighted based of the number of detected vehicles
and average speed of the segment. Thicker segments illustrate higher flow, while the color
shows the speed. The aggregate grants a nice large picture view of the city state and can be
used to track trends in segments of long periods of time. However, the aggregate is derived
from the trace set and so there is a clear loss of information that would otherwise prove
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Figure 2.3: Number of segments and total
miles in SF by Segment Type

Figure 2.4: Boxplot Distribution of Average
Detection Volume in SF by Segment Type

to be useful. Maneuvers, origin/destination, path choice, stop position, lane position, and
acceleration are found in the trace set and lost in the aggregate. Figure 2.6 shows a pause
in the animation of the trace set.

Figure 2.5: SF snapshot of a single 15 min
period captured by the Aggregated Dataset.
Speed is illustrated by the color of the seg-
ment while number of detected vehicles is
illustrated by the thickness of the line.

Figure 2.6: SF snapshot of active trips cap-
tured by the Trace Dateset.

2.2 Supporting Loop Detector Datasets

Connected vehicles have a limited and variable sampling of the general driving population.
To understand the impact of the penetration rate and the accuracy of connected vehicle mea-
surements we compare CV results to available detector datasets. Vehicle Detector Sensors
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have widespread and long term established use measuring traffic flows. In ground sensors
detect whether or not a vehicle is over them or not. These provide accurate counts of vehicles
crossing over them.

CalTrans PEMS Dataset

CalTrans currently collects and publishes detector data covering California’s major freeways.
The Freeway Performance Measurement System (PEMS) aggregates detector data and pro-
vides 5 minute reports. The primary direct measurements are flow, the number of vehicles in
5 minutes, and occupancy, the percentage of time detectors have a vehicle over them. From
these measurements estimates of speed are produced using a g-factor estimation algorithm.
The system also has algorithms to detect sensor health and report on the number of healthy
sensors with the ”percent observed” value. In the event of unhealthy detectors values are
imputed using best estimates from healthy detectors and past values [8]. Individual lanes as
well as flow weighted aggregates of all lanes are reported. Figure 2.7 shows the placement of
PEMS detectors on highways running through SF.

station timestamp num samples pct observed flow occupancy speed

401409 09/01/2021 12:00:00 30 75 503.0 0.1332 57.6

401409 09/01/2021 12:05:00 30 75 527.0 0.1416 55.2

401409 09/01/2021 12:10:00 30 75 550.0 0.1346 56.7

Table 2.4: Slice of PEMS Detector Data

Sensys In-Ground Detectors

Sensys Networks, Inc. provided data from September 2019 - November 2019 to compare
to the Los Angeles corridor CV trace data. Sensys has many intersections on Hwy 1 and
Hwy 107 outfitted on the outflows of legs of intersections. Figure 2.8 shows the location
of monitored intersections and Figure 2.9 illustrates the typical sensor placement for these
intersections.

The Sensys data reported gave the up and down times of triggered detection sensors. We use
this information to get total outflows out of intersection directions and the temporal spacing
between vehicle detections.

2.3 Accident Database - TIMS

The last dataset that we utilized is accident data obtained by the Transportation Injury
Mapping System (TIMS) [52]. The TIMS database collects records of traffic accidents re-
ported by California Highway Patrol. Data entry takes some time to finalize so the most
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Figure 2.7: Placement of PEMS Stations on SF Highways

Figure 2.8: Location
of intersections outfit-
ted with Sensys Detec-
tors

Figure 2.9: Placement of Sensys Sensors at an intersection on
Hwy 107

recent years, 2021 and 2022 are not available. From the database we obtain accident data
of SF from the years 2011 through 2020. TIMS provides many details on reports relating to
severity of accident, injuries involved, the involvement of bicycles/pedestrians, road condi-
tions, etc. We mainly utilize this to filter accidents that occur at intersections with specific
”movements that precede the accident”. Table 2.6 grabs a slice of the database giving the
location, date, and maneuver code of accidents. Figure 2.10 plots all the recorded ”left-turn”
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start end dt sensor direction apcc

2019-09-01 00:00:10.039 2019-09-01 00:00:10.054 15.0 1 SB 6703

2019-09-01 00:00:21.882 2019-09-01 00:00:22.390 508.0 12 SB 6703

2019-09-01 00:00:21.789 2019-09-01 00:00:22.304 515.0 13 SB 6703

Table 2.5: Slice of Sensys Detector Data

accidents at intersections in SF.

CASE ID COLLISION DATE COLLISION TIME MOVE PRE ACC INTERSECTION POINT X POINT Y

9219287 2020-11-20 831 E Y -122.389687 37.786221

9225894 2020-12-28 1355 E Y -122.447540 37.781040

9242419 2020-12-14 1445 E Y -122.431580 37.769321

Table 2.6: Slice of SF accident data from TIMS Database.

Figure 2.10: Map of recorded accidents involving left turns at an intersection in SF between
the years of 2011-2020. Larger dots indicate multiple accidents at that location.
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Chapter 3

Penetration Rate and Estimation of
Traffic Flow

Measures of traffic volume are important in assessing the general health of the road network
and making network design and control decisions. Traditional method of counting traffic
using in ground detectors provides high resolution, accurate measurements of traffic flow.
However, installation and maintenance of these sensors is laborious and expensive. Thus, the
number of installed sensors and availability of data is sparse and limited to major through-
ways.

There is great interest in collecting a broader view of the traffic network. Traditionally
probe vehicle data came from specially equipped vehicles that captured their data [54].
Other technologies have been used to provide wide-area data. Authors of [10] estimate
traffic flow from movement of cell phones from cell tower to cell tower. In [55], authors try
to evaluate the effectiveness of using mobile device GPS data. The recent availability of
connected vehicle data offers an exciting window into the traffic state.

In order to understand how representative the CV dataset is of traffic, we need to under-
stand what percent of traffic, or penetration rate, it measures.There has not been much work
exploring the penetration rates of emerging connected vehicle datasets. In [45], authors ex-
amine the spatiotemporal penetration rate of a probe vehicle dataset over 2 highway sections
in Washington DC over the course of a week. They model total traffic volume as a negative
binomial distribution conditioned on the number of sample vehicles, time and location. [28]
calculate the average penetration rate for Wejo connected vehicle data across detectors in
Indiana, Ohio, and Pennsylvania. They analyze select Wednesdays and Saturdays across 7
months. The authors of [61] developed a method for an unbiased estimate of penetration
rate using only the connected vehicle data at signalized intersections.

In this chapter, we utilize existing detector datasets, PEMS and Sensys, to evaluate of the
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penetration rates of San Francisco freeways and some major arterials of Los Angeles. We find
that the connected vehicle sample is not random day to day, as the same vehicles remain in
our dataset. This creates a sampling bias but also generates a periodicity to the penetration
rate signal. We find that these signals can be highly localized preventing wide-area use of
the signal, however the periodicity can be used to improve flow estimations locally.

3.1 Comparing to San Francisco PEMS

We are interested in analyzing the penetration rate within our connected vehicle datasets
and how it changes with time of day and location.

αi(tm) = Si(tm)/Ni(tm) ∗ 100 for m ∈ [0, ..., n]

Where αi(tm) is the measured penetration rate at location i over the time interval [tm, tm+1).
Si(t) is the number of connected vehicles detected and Ni(tm) is the total number of vehicles
measured at location i in the interval [tm, tm+1). ∆t = tm+1 − tm is equal to 15 minutes.

We use PEMS detector data [11] pulled from the CalTrans Database to obtain a measure
of the total number of vehicles on the road at available locations in San Francisco. The
PEMS Dataset provides data for all 5 min intervals but any missing data or bad detection
data gets filled with imputed values. To get the best estimate of the ground truth flow rates
combined with an adequate number of samples, we look only at 15 minute intervals where
the percentage of observed samples from PEMS is greater than or equal to 80%.

Using the aggregated dataset we can use observations over the course of 6 months. Sometimes
aggregated segments cover more than one PEMS station.

In the case of multiple PEMS stations per Wejo segment we take the maximum observed
flow rate across PEMS sensors at that location:

Ni(tm) = max
j

1{Oi,j(tm)≥80} ∗Ni,j(tm)

Where Oi,j(tm) and Ni,j(tm) are the percentage of observed samples and total vehicle count
for station j at location i. Measurements are dropped when no stations meet the observation
percentage threshold.

Figure 3.1 shows a segment on Northbound Highway 101 where connected vehicle data
is aggregated over 15 minute intervals. Points on the segment display the approximated
location of PEMS stations associated with this segment.
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Figure 3.1: Example Aggregated Wejo Segment on NB 101 and the corresponding PEMS
stations.

In figure 3.2 we see a sample week of measurements Ni(tm) and N̂i(tm) of the corresponding
NB 101 segment. Figure 3.3 shows the calculated penetration rate αi(t) for that week.

Figure 3.2: 1 week sample of NB101 segment from PEMS and Wejo datasets

Pen Rate Autocorrelation

From figure 3.3 we can see that there is a strong daily pattern for the penetration rate and
that there is a difference between the weekday and weekend patterns. We can run an au-
tocorrelation on the weekday portion of the penetration rate signal to highlight the time of
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Figure 3.3: 1 Week Sample of Wejo’s penetration rate estimated using PEMS flow data.

day correlation.

To do this we first modify the autocorrelation estimation to only look at the correlation
across weekdays. Let T be all times that correspond to a weekday (Mon-Fri). We use an
indicator function to average correlations where both the current and lagged interval are
within a weekday.

1T(m, k) =

{
1, if tm, tm+k ∈ T,
0, otherwise

1T(m) = 1T(m,m)

We calculate the weekday average and variance:

µT =

∑n
m=1 1T(m)αi(tm)∑n

m=1 1T(m)

σ2
T =

∑n
m=1 1T(m)(αi(tm)− µT)

2∑n
m=1 1T(m)

We estimate the autocorrelation coefficient using the following formula and plot the results
in figure 3.4:

R̂(k) =
1

σ2
T
∑n−k

m=1 1T(m, k)

n−k∑
m=1

1T(m, k)(αi(tm)− µT)(αi(tm+k)− µT)
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Also plotted are the 95% confidence interval for a white noise process:

CI(k) = ±1.96
( n−k∑

m=1

1T(m, k)
)−1/2

Figure 3.4: Autocorrelation Plot of Weekday Penetration Rate for NB101 Segment

From 3.4, we can see there is a strong periodicity to the penetration rate signal. This sug-
gests a need to adjust any estimation from the connected vehicle data, to time of day.

Time of Day Profile

To examine the variability across days, we analyze the scatter of penetration rates that occur
different times of day. We compare samples that occur at the same 15 minute interval in a
day on either weekdays or weekends. Let τq specify the set of tk’s that occur at a certain
time of day, for example, 8:00 - 8:15am weekdays. Define the quarter-hourly average for
location i as such:

Qα(τq, i) =
1∑

tk∈τq 1

∑
tk∈τq

αi(tk)

From figures 3.5 and 3.6 we see the daily profile of a segment of NB101. They show the
scatter of penetration rates for different times of day along with the average and standard
deviation. We note that the late evening and early morning hours generate a wider spread
and the average is a more chaotic. Then during more typical driving hours, the spread tight-
ens up and the average takes a more concave regular shape. This is characteristic of other
locations as well.
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Figure 3.5: Scatter plot of NB101 weekday penetration rates by time of day

Figure 3.6: Scatter plot of NB101 weekend penetration rates by time of day

The more chaotic nature of early morning times can be attributed to high variance with
low flow and the sampling bias, using the same set of connected vehicles everyday. Fig 3.7
plots the scatter points for pairs of observed flow Ni(tk) and penetration rate αi(tk) for all
locations and times, i, tk. The variance in penetration rate it clearly larger for measurements
of low traffic volume. This is expected, at a flow of 100 vehicles per hour, a difference in 1
vehicle detection creates a 1% swing. Where as at 1000 vehicles per hour, a difference of 1
vehicle is only .1%.

Combine this with the sampling bias created by observing the same set of vehicles everyday.
Connected vehicle measurements will capture the daily driving habits of the vehicles in the
set. For example, say on average segment i witnesses the same 2 vehicles between 5-5:15am.
Say car 1 does not travel on Wednesdays. That single car at a total flow of 100 vehicles
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Figure 3.7: Traffic Flow vs. Connected Vehicle Penetration Rate

causes a 1% swing for Wednesdays on that segment/interval. In times of low flow the aver-
age penetration rate is very sensitive to day-to-day behavior of the sample set and creates a
non-smooth time of day profile.

From figure 3.8 we see average penetration profiles on weekdays for various locations. Each
location exhibits a chaotic rate for low flow hours to a more well defined trend for working
hours. The plot also shows how locations exhibit similar behavior but produce there own
individual penetration rate profiles. This highlights the need to calibrate for location. We’ll
next look at how well locations correlate with each other.

Figure 3.8: Quarter-hourly average penetration rates of SF Highways
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Spatial Correlation

In ground detector measurements do not exist everywhere and so it is useful to see how
penetration rate changes with locations. We would like to know how useful the using the
flow and penetration rate from a near buy in-ground detector would be for a location where
we only have connected vehicle data. To assess, we look at the correlation between locations
that we have detector data for. We calculate the Pearson correlation coefficient between two
locations:

ρi,j =
E [(αi − µi)(αj − µj)]

σiσj

where µi and σi are the mean and standard deviation of the penetration rate at location i,
αi(tk)

We show two routes to exemplify the patterns seen across highways. The first route shows
correlation starting from Interstate 280 heading north onto 101 and then turning around
and heading back in the south direction. The locations are shown on the map in Figure 3.9
where the color of the highlighted segment matches the labels in the correlation matrix in
Figure 3.10.

This first route demonstrates a couple typical patterns seen. We see neighbors on the same
highway following the same direction are correlated well as shown by the brighter 2x2 squares
along the diagonal. It is expected that vehicles in the sample set mostly stay on the highway.
Further, looking at movement across an interchange, there is a slight correlation shown by
the 4x4 areas on the diagonals. It is not as strong as direct neighbors but expected as some
percentage of traffic splits choosing one highway vs the other. Lastly, opposing flows do
not demonstrate a significant correlation in penetration rate illustrated by large dark 4x4
off-diagonals.

By comparing the penetration rate correlation matrix in figure 3.10 to the correlation of
flow rates shown in figure 3.11, the effect of sampling a portion of traffic becomes apparent.
Total flow shows a strong correlation across all locations where that is clearly not true with
penetration rate.

The second route demonstrates the effect of encounter a major interchange while staying on
the same highway. Shown in 3.12, we analyze one location on Hwy 101 below (Paul Ave.)
the I-280 interchange and two locations above it (Faith and Vermont). Here we see the that
running through a major interchange drops the penetration rate correlation between neigh-
bors. This highlights that the for highway traffic the only useful information from neighbors
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Figure 3.9: Locations, I-280
and Hwy 101

Figure 3.10: Penetration Rate Correlation Matrix for
I-280 and Hwy 101 locations

Figure 3.11: Flow Rate Correlation Matrix for I-280 and Hwy 101 locations

may be from those neighboring locations that are in the same direction between interchanges.
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Figure 3.12: Correlation
Locations, Hwy 101 Figure 3.13: Penetration Rate Correlation Matrix for

Hwy 101 locations

An interesting outcome between opposing directions, even though they don’t share a sig-
nificant correlation, they produce similar distributions of penetration rates. 3.14 shows the
boxplots of all measured penetration rates for locations with more than 100 valid days of
PEMS Data. The boxplots show the 4 quartiles of measured rates along with the means.
Plotted below the box plot are corresponding average observed flow for each locations.

Some speculation as to what is happening. Opposing directions of traffic tend to experience
different daily flow profiles but similar average flows. This could be do to commute round
trips using one direction at some point in the day, more than likely, return to use the other
direction.
From figure 3.7, the variance in penetration rate is related to the total flow. Thus, opposing
directions with similar average flows should exhibit similar variance in penetration rate.
The same commuter loop argument could be applied to the number of sampled vehicles
observed in each direction and so opposing directions see similar averages of vehicle counts.
This would give them similar penetration rate means. Variance and mean could be enough
to characterize the distribution of penetration rates and so as seen in figure 3.15 opposing
directions have closely matched distributions.
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Figure 3.14: Penetration Rate BoxPlots by Location

Figure 3.15: Penetration rate distribution plots on opposing directions
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Weekly Total Penetration Trends

As more connected vehicles come online, it is expected that the penetration rates will in-
crease over time. 6 months of data is a significant portion of time to investigate the trend.

Let τw specify the set of tk’s that occur in the week w. Then the weekly total penetration for
location i is the total observed connected vehicles at location i divide by the total observed
PEMS Flow:

Wα(τw, i) =
∑
tk∈τw

N̂i(tk)

Ni(tk)

Figure 3.16: Week to week total penetration for select highways in SF

From figure 3.16 we there are a variety of week to week signals depending on location. At
101 Valencia area, pen rates can change dramatically from week to week with no general
trend. In contrast, the 280 location maintains a relatively stable pen rate week to week with
no significant trend. Last there is Hwy 1 location where pen rate stability is somewhere
between the other two and it has a slight trend up.

3.2 Comparing to Sensys Detector Data

Caltrans PEMS data grants a window into how connected vehicle data is representative of
the freeway network. Using the Sensys dataset we get a view into the arterial road network.
Detectors are placed on major intersections on the Hwy 1 and Hwy 107 in southwest Los
Angeles. Detector are on the outgoing lanes of each intersection. Figure 3.17 highlights the
setup. The sum of vehicle counts in 15 minute intervals from in ground detectors across the
red line are taken as the total flow on the network Ni(tk) Connected vehicle data is filtered
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for the geofenced area after the intersection, shown as yellow scatter points. Unique vehicles
seen in each 15 minute interval are our connected vehicle sample Si(tk)
We repeat the some of the same analysis as the PEMS Data.

Figure 3.17: Flow rate capture setup for Sensys Detectors and Wejo Connected Vehicle Data.

Time of Day Profile

Figures 3.18 and 3.19 show the average quarter-hourly penetration rates for a sample inter-
section going northbound 107. Early morning hours are omitted because they spike wildly
due to low flow and hide the detail of working hours. Note that the arterial street exhibits
an average profile that is less smooth and has higher variance than the highway samples.
This is mostly due to operating at lower flow rates. Also there is less of a concave trend
moving through the day and the profile remains relatively flat during the busy hours of the
day. This isn’t just one isolated intersection.

Figure 3.18: Weekday quarter-hourly aver-
age penetration rate for LA arterial.

Figure 3.19: Weekend quarter-hourly aver-
age penetration rate for LA arterial.
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Figure 3.20 shows the average profiles of multiple intersections on both Hwy 1 and Hwy
107. These samples are distantly spread out and they all exhibit similar profiles. This could
suggest that a wide-area penetration rate is more applicable to the arterial streets. It is
unclear why they exhibit a more flat profile as compared to the highway. Possibly, this is
a consequence of the different composition of commercial vehicles and consumer vehicles on
the different types of road network.

Figure 3.20: Mixed quarter-hourly penetration rate profiles of LA arterials.

Spatial Correlation

Looking at the correlation of penetration rates across Hwy 107, figure 3.22 shows that the
drop-off in correlation on a major arterial is mostly related to distance. The largest break in
correlation coefficients in the same direction is between the largest gap between intersections.
Opposing directions again show no correlation.
Penetration rate correlation on these roads may not have any significance when the distri-
bution of penetration rates is relatively the same across working hours and location. We can
see the implication of this in the flow estimations made from connected vehicle data.

3.3 Linear Projection of Sample Counts

Ultimately, the goal is to be able to extract flow estimations from the connected vehicle
dataset. The question becomes what characterization of the penetration rate do we need
to get reliable information. We don’t have ground truth everywhere, if we did we wouldn’t
need to use the CV data to measure it. However the ground truth is needed to understand
what the penetration rate is to be able to project the connected vehicle sample to total flow.

The authors of [61] use estimates of queue position at signalized intersections to get estimates
of the penetration rate solely from connected vehicle data. Other options include running
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Figure 3.21: Pen-
etration Rate Cor-
relation Map

Figure 3.22: LA Intersection Penetration Rate Correlation

single day or week surveys. Here we explore given limited estimates of the penetration rate,
how well can we estimate total flow from the connected vehicle data using linear projection.

For this analysis we will focus on estimation error generated for weekdays from 6am - 9pm.
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Limited Penetration Rate Profiles

We estimate total flow of a location by linear projection, dividing the count of connected
vehicles by an estimated penetration rate:

N̂i(tk) = Si(tk)/α̂i(tk)

where we choose some estimation of the penetration rate for location i and time tk, α̂i(tk).

We compare five estimates of the penetration rate. Reminder that τq encapsulates a specific
time of day, on weekends or weekdays. Say 8:15am on weekdays.

1 Day estimation of quarter-hourly penetration rate:

α̂i(tk) = Q̂d(τq(tk), i) = |τq ∩ Td|−1
∑

tm∈τq∩Td

αi(tm) where Td = {tm|tm ∈ Survey Day}

1 Week estimation of quarter-hourly penetration rate:

α̂i(tk) = Q̂w(τq(tk), i) = |τq ∩ Tw|−1
∑

tm∈τq∩Tw

αi(tm) where Tw = {tm|tm ∈ Survey Week}

Full Dataset quater-hourly average penetration rate:

α̂i(tk) = Q̂α(τq(tk), i)

Local Total Penetration Rate:

α̂i(tk) =

∑
tm

Si(tm)∑
tm

Ni(tm)

Citywide Total Penetration Rate:

α̂i(tk) =

∑
i

∑
tm

Si(tm)∑
i

∑
tm

Ni(tm)

We calculate the mean absolute percentage error on weekday working hours to compare
results. Let Twkdy be the set of all times from 6am-9pm Weekdays.

MAPEi =

∑
tm∈Twkdy

|Ni(tm)− N̂i(tm)|/Ni(tm)∑
tm∈Twkdy

1
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Figure 3.23: SF Freeway flow estimation er-
ror for different estimates of penetration rate

Figure 3.24: LA arterial flow estimation er-
ror for different estimates of penetration rate

Figure 3.25: Optimal weighted moving av-
erage window to smooth flow estimation on
SF Freeways

Figure 3.26: Optimal weighted moving av-
erage window to smooth flow estimation on
LA arterials

Figure 3.27: Smoothed flow estimation error
for SF.

Figure 3.28: Smoothed flow estimation error
for LA.

From figures 3.23 and 3.24 we see that the mean absolute percentage error is large for both
SF and LA, even with a knowledge of the average penetration rate for each time of day.
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However, connected vehicle data is quite noisy and can benefit greatly from some general
smoothing. We applied a weighted moving average to the flow estimations and ran a linear
program to calculate the optimal weights for each location. Figures 3.25 and 3.26 show the
resulting moving average windows extending out 1 hour ahead and 1 hour behind. The op-
timal averaging window is close to an exponential window. Figures 3.27 and 3.28 show the
smoothing significantly reduced the error percentage to below 10% with knowledge of the
mean time of day penetration rate. Figure 3.29 shows the flow signal measured by detector
data and the smooth projection of connected vehicle data.

It’s clear that a one day survey is not enough information to get a reliable estimation of
the penetration rate. However 1 week did very well predicting months of traffic flow from
the connected vehicle sets. It is not clear why 1 week did much better on SF highways vs.
LA arterials. It could be a factor of total flow with penetration rates having a narrower
standard deviation on the SF highways. Interestingly the LA arterials all had similar pen
rate distributions across location and time. Thus the flat average pen rate performed very
well. It is possible that sampling of arterial roads is more homogeneous as in the LA case
vs. motorways in the SF case. Distribution of commercial vehicles could be a factor. More
work needs to be done on what factors affect the penetration rate signals seen across cities.
As penetration rates increase estimation errors are expected to decrease, but understanding
confounding factors will aid to reduce that error further.

Figure 3.29: True flow vs smoothed estimated flow.
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Chapter 4

Connected Vehicle Lane Identification

Connected vehicle data has potential to extract lane level information. If samples can be
assigned to the correct lanes then we can extract valuable information on each lane: speed,
flow, density, queue length, number of lane changes. Understanding where and when lane
changes occur can help improve simulations of traffic flow when modeling agent decisions.

4.1 Fitting Lane Positions

It has been established that the distribution of vehicle positions across the road can be mod-
eled as a Gaussian Mixture Model [13]. For a vehicle in a particular lane, aggregation of
GPS inaccuracies and driver drift approximately create a Gaussian distribution of positions
relative to the center of a lane. The combination of Gaussian distributions for each lane
creates a mixture model.

For a particular segment we can fit a mixture model using connected vehicle data. Figure
4.1 demonstrates the filtering of connected vehicle data for a discretized segment of NB
Hwy 101. With a limited segment length the road can be approximated as straight and the
data projected onto an x-y plane. The y-axis here runs parallel to the flow of traffic and
the x-axis perpendicular across the road. Taking the histogram of all GPS points projected
onto the x-axis reveals the distribution of lane positions. From this we can fit a GMM model.

To approximate each lane as equal width we tie the variance for each lane’s Gaussian and
fix the number of lanes to a known number of lanes. We use the Expectation Maximization
Algorithm to find a local maximum likelihood given the data:

max
ω,µ,σ

N∏
j=1

p(xj|ωi, µi, σ) = max
ω,µ,σ

N∏
j=1

ℓ∑
i=1

ωiN (xj|µi, σ)
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Figure 4.1: Projection of connected vehicle GPS points to segment x-y plane.

4.2 demonstrates the collection of connected vehicle data for a road segment and the fitted
GMM distribution.

Figure 4.2: Fitting Gaussian Mixture Model to a road segment of NB 101.

For a corridor of interest we section the road into straight, discrete segments. For each
segment we fit an individual GMM using the connected vehicle data. Each segment has a
set of fit means approximating the center position of the lane and shared variance across the
lanes. Figure 4.3 shows the resulting lane means of this process.

Thus, for any particular GPS trace point, we can bin its position to a localized segment,
project onto the segments aligned axis, and predict which lane the sample belongs to by
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Figure 4.3: GMM means from connected vehicle data on NB101

choosing the closest lane to the projected x-coordinate. Unfortunately, the GPS traces are
not accurate enough and measurements from each lane bleed into each other. Therefore
naively assigning based off proximity to each lane will result in many errors. In figure 4.4
we see the results of this assignment for one trip displaying an excess of lane changes.

Figure 4.4: Naive assignment resulting in excessive lane changes
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4.2 Viterbi Search

To get a better approximation of lane assignment, we consider the entire trajectory of the
vehicle. If a vehicle on a three lane road makes two significant movements to the left, we can
make a reasonable guess that they started in the farthest right lane. The Viterbi algorithm
has been used with noisy GPS traces to snap a full trip trajectory to the map network. (cite
Map Snapping Resources) We use these ideas to snap noisy GPS measurements to lanes.

To estimate the total lane assignments for a whole trajectory we model the sequence of lanes
as a hidden Markov model. For every sample point in a vehicle’s trajectory, it’s hidden
state is the lane the vehicle is in, and the observed state is the measured projected x-axis
position across the road. Modeling the HMM process and utilizing the Viterbi algorithm
we can determine the maximum a posteriori probability estimate of the sequence of lanes.
Let sk ∈ 0, 1, ..., L be the hidden sequence of assigned lanes for a road with up to L lanes.
Let ok ∈ R be the sequence of observed states as the projected horizontal distance from the
center of the left most lane.

Consider figure 4.5 showing the sequence of 2 samples, k and k+1. Between the two samples
the vehicle shifts lanes from 0 to 1, sk = 0, sk+1 = 1. µi,k is the lane center for lane i relative
to lane 0 (µ0,k = 0). The lane center is derived from the mean of the Gaussian Model fit at
the location of observation k. σk is the shared variance of the GMM at k.

Figure 4.5: Sequence of lane states and observations

For the Hidden Markov Model we need to define the emission and transmission probabilities.
The emission probability is the likelihood of an observation given we are in some state or
p(ok|sk = ℓ). This probability will simply be the likelihood derived from our Gaussian
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Figure 4.6: Trellis diagram for lane assignment HMM

mixture models.

pe(ok|sk = ℓ) = N (ok|µℓ,k, σk) =
1

σk

√
2π

exp

(
1

2

(ok − µℓ,k

σk

)2)

For the transmission probability we take inspiration from [38]. The authors use the Viterbi
Search to snap GPS traces to the road map. Here they take the difference in distance of
the mapped route to the greater circle distance between all GPS points. That difference is
mapped to an exponential distribution. This acts as a filter for improbable paths.
Along that line of thinking we create a transmission probability that depends on the lateral
distance traveled between samples. A lateral distance that is close in length between lanes
should have a higher probability of transition. Where if the lateral distance traveled is close
to zero then lane transition has a low probability. This will act to filter lane changes when
a vehicle is consistently sampled near the border of two lanes.

The transmission probability from lane i to lane j from observations ok and ok+1:

pt(j|i, ok, ok+1) ∝
1

β
exp(−β∥(µj,k+1 − µi,k)− (ok+1 − ok)∥)

Consider the trellis diagram in figure 4.7. This represents all paths available when deciding
the lane assignment (assuming only 1 lane change is possible between samples). The like-
lihood of any particular path is the product of all nodal emissions and edge transmissions
through the path. The Viterbi Search Algorithm uses dynamic programming to calculate
the path with the greatest likelihood. It does so by computing and retaining the optimal
path to each node at every time step. At the last observation we pick the node with the
greatest likelihood and backtrack through the path that led to that node.



CHAPTER 4. CONNECTED VEHICLE LANE IDENTIFICATION 35

ℓ0

ℓ1

ℓ2

ℓ3

k = 0 k = 1 k = 2 k = 3

Figure 4.7: Viterbi search through the trellis diagram

Viterbi Algorithm:

V0(j) = pe(o0|s0 = j)

Vk+1(j) = max
i∈L

Vk(i)pe(ok+1|sk+1 = j)pt(j|i, ok, ok+1)

s̄k+1(j) = argmax
i∈L

Vk(i)pe(ok+1|sk+1 = j)pt(j|i, ok, ok+1)

In our implementation, emission probabilities are determined by closest empirical Gaussian
mixture model of lane positions, and transmission probabilities are tuned using the parameter
β. With no real ground truth to compare and optimize the β parameter to, β is selected for
what yields subjectively reasonable results. Setting β too high and the algorithm is too strict
on transitions and lane changes are left undetected. Setting β too low and lateral movement
becomes irrelevant and the Viterbi algorithm produces the same results as matching each
point to the closest lane center. We found that β = 1.5 produced reasonable results between
these two outcomes.

In figure 4.8 we see the reassignment of lanes from the Viterbi algorithm over the naive
assignment seen in 4.4. Because the trajectory runs close to the lane boundary, many
single noisy samples are interpreted as a change of lane. Here the additional transmission
probability acts to smooth the lane change detections.

4.3 Results

The results of lane assignment via the Viterbi algorithm are displayed in Figure 4.9. To
get a sense of improvement over assignment of the closest lane, we plot the distributions of
lateral positions for each lane. We see from Figure 4.11 that assigning from Viterbi search
results in lane distributions that more closely approach the fit Gaussian Mixture Models as
lane distributions are allowed to overlap.
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Figure 4.8: Viterbi lane assignment of trajectory shown in figure 4.4.

Figure 4.9: Viterbi lane assignments of all points.

To compare the different assignment methods measures of total lane changes we plot the
average lane change rate for each lane by time of day on weekdays. We calculate the average
change rate out, in and net for each lane. For example, Let δi,o be the number of lane
changes out of lane i for time interval tk. S(tk) is the total number of detected vehicles on
the segment for time tk. Then the average outflow rate for time of day tau is calculated as
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Figure 4.10: Lateral position distribution from naive lane assignment

Figure 4.11: Lateral position distribution from Viterbi lane assignment

follows:

αi,o(τ) = |Tτ |−1
∑
tk∈Tτ

δi,o(tk)

S(tk)
where Tτ = {tk|tk in weekday time of day τ}

Similar average rates are calculated for the inflow of each lane and the net flow out of each
lane. Net outflow average rate is a result of averaging the difference of outflow and inflow
over each time of day. Figures 4.12 and 4.13 show the calculated rates for each the naive
and Viterbi assignment methods. Notice that the Viterbi assignment significantly reduces
the inflow and outflow rates of each lane, however the net outflow rates remain stable. This
suggests that that the algorithm does well in filtering out jitter across the lane lines which
would average out to zero net changes in and out of the lane.

We wanted to explore the lane change rate out of lane 0 a bit more. This is the farthest left
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Figure 4.12: Lateral position distribution from naive lane assignment

Figure 4.13: Lateral position distribution from Viterbi lane assignment

lane and this particular segment of NB101 occurs right before a major fork in the highway.
This left lane becomes and exit only lane downstream. We found two signals that this lane
change rate correlates well with. First we compare the average net vehicle detections taking
the right fork. Let SR(tk) be the number of connected vehicles taking the right fork for time
tk and SL(tk) be the number taking the left. The average net flow on the right fork, QR(τ)
is:

QR(τ) = |Tτ |−1
∑
tk∈Tτ

SR(tk)− SL(tk) where Tτ = {tk|tk in weekday time of day τ}

Figure 4.14 shows the plot of average net changes out of the left lane with the net right side
fork flow.

The outflow rate also correlates well with the average speed in the lane. Figure 4.15 plots the
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Figure 4.14: Left lane change outflow compared to the net right side flow of a downstream
fork.

two signals for comparison. To speculate on what is happening, during times of congestion,
flows on both sides of the fork are more even and speed difference between each lane is
negligible. Therefore you get a more even mix of lane choice to destination pairs. During
non congestion times the left lane is faster which creates a bias in preferred lane until drivers
need to move over to go right.

Figure 4.15: Left lane change outflow compared to average lane speed.

Plotting the distribution of where lane changes occur tells an interesting story about when
drivers choose to change lanes. From Figure 4.16 we see a clear spike in lane changes out
of lane 0 at the 700m mark. This is about 400m before the first sign indicating a fork in
the highway. We see a slightly later spike for lane 1 and a little later spike for lane 2. Lane
3, the rightmost lane has the highest distribution around 0m and 900m. This may be the
result of a on ramp right before this road segment and an off ramp right after.
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Figure 4.16: Distribution of lane change locations out of each lane.

Lastly, we look at the speed of each lane and compare it to the lane speed measurements of a
PEMS station. We take the time of day average of the speedometer readings of points near
the PEMS station location. Using the lane assignment we get the average speed curve for
each lane at the PEMS station. We compare this to the time of day average of the PEMS
g-speed estimation. Figure 4.17 shows the results. Note, the PEMS station was down for
lane 1 and so the speed calculations are corrupted. For the other three lanes the results
are interesting. The two signals overlap okay but there is clear error between the two. The
expectation was the connected vehicle data would approximate the average speed well as
sampling errors would average out over the month creating an unbiased estimate. Curiously,
the overall trends are in agreement, both signals dip and spike at the same time. This is
possibly a scaling issue linked to the g-factor estimation. The g-factor estimation does rely
on the assumption of a known free flow speed that scales its estimation. More work is needed
to explore the discrepancy between these two signals.
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Figure 4.17: Speed of each lane compared to PEMS g-factor speed estimation.
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Chapter 5

Queue Length Estimation

The distribution of queue length at signalized intersections provides crucial information for
performance evaluation [35, 5], design and optimization [12, 36], and real-time operation [56]
of traffic signals in road networks. Traditionally, estimation algorithms are developed based
on information collected via manual surveys, in-ground fixed location sensors (e.g. loop
detectors), or cameras. These algorithms are based on two types of models: (i) input-output
models [42, 22, 64, 3] that attempt to estimate the queue by considering the cumulative
arrivals and departures at an intersection; and (ii) shock-wave models [32, 44] that consider
the dynamic process of formation and dissipation of queues at an intersection.

The main disadvantage of the traditional methods is their requirement for installation, op-
eration, and maintenance of physical hardware at every intersection. As such, they have
high capital costs, between $30,000-$60,000 per intersection [65]. Therefore, they cannot
be implemented at a large scale to cover all intersections in a network. In the U.S., it is
estimated that only about 3% of intersections are instrumented and monitored in real-time,
and the majority of intersections receive signal re-timing updates only once every three to
five years.

Recent advancement and deployment of connected vehicle technology has created new pos-
sibilities to address the high capital and operational costs of traditional measurements by
physical sensors such as loop detectors. As a result, there now are several studies of algo-
rithms for queue length estimation based on CV data. The authors in [14, 30, 63] develop
algorithms based on shock-wave models in which they try to identify critical points for each
CV, marking the time it joins and leaves the queue. The estimation methods in [6, 25]
are based on the travel time for CVs through an intersection. In [18, 17, 16], the authors
develop a stochastic framework to estimate the queue length at the end of each cycle based
on the location of CVs. Alternative stochastic estimation methods are proposed in [27, 26,
47] based on the estimation of arrival/departure processes.

A practical limitation of existing queue length estimation algorithms based on CVs is that
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they typically require a penetration rate ∼10% or greater to perform well. While reaching
such targets is plausible in the future, our analysis from Chapter 3 of the current penetration
rate of CVs in California, suggests 1.5%− 3% as the average penetration rate of CVs from
data collected by Wejo, Inc. Additionally, many estimation algorithms [18, 17, 16, 51, 27,
26], require the knowledge of penetration rate at an intersection which is difficult to obtain
without knowing the ground truth for the total numbers of vehicles in advance. This is
especially challenging as our analysis shows that the average penetration rate can differ
considerably even between two neighboring corridors, e.g. ∼10% relative difference between
CA-107 and CA-1 corridors. Further the spatial correlation between penetration rates drops
considerably after a few intersections.

This chapter consists of work presented at ITSC 2021[48]. We describe a novel approach
to estimate queue length at signalized intersections and address the above limitations. The
estimation algorithms do not require knowledge of the penetration rate and is applicable
for penetration rates smaller than 1%. In contrast with existing methods that estimate the
queue length on a cycle-by-cycle basis, we estimate the probability distribution and average
value of queue lengths during selected time intervals, e.g. morning peaks during weekdays.
The seasonal patterns of traffic at intersections are exploited to compensate for the low value
of penetration rate of CVs. The algorithms are agnostic to the penetration rate and makes
no additional assumption about the queue dynamics.

5.1 Analytical Model

Figure 5.1: Queue formation behind an intersection

Consider a signalized intersection as in Fig. 5.1. For each leg of the intersection and a time
interval T (e.g. morning peaks), we assume that the maximum queue length X (in meters)
for each traffic cycle in each lane has a probability distribution fX where

P{x ≤ X ≤ x} =

∫ x

x

fX(x)dx.

Our goal is to estimate fX from observation of GPS traces. Let α denotes the penetration
level of connected vehicles. That is, the GPS traces of each vehicle is observed with proba-
bility α; in our dataset α ≃ 3%. Let Y denote the distance/position from the intersection
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of each stopped vehicle we observe from its GPS trace. Conditioned on the queue length X,
Y is a random variable with approximate distribution

Y ∼ Uniform[0, X] conditioned on X.

So the probability distribution of Y (when we do not know X) is given by

fY (y) =

∫ ∞

y

1

x
fX(x)dx. (5.1)

Consequently,

fX(x) = −x
dfY (x)

dx
. (5.2)

Note, the simple collection of Connected Vehicle stop positions has a sampling bias. This
is due to cycles with longer queues, on average, contain more probe vehicles. The bias
becomes more significant with wider queue length distributions. The approach above takes
into account the sampling bias explicitly by conditioning on X. Further, the distribution
estimation of X is only reliant on the distribution of Y and does not require knowledge of
the penetration rate α nor any timing information for the intersection.

This formulation does makes a few key assumptions. First, in constructing the empirical
distribution for fY we assume that the position of observed stopped vehicles are independent.
This assumption is reasonable when the penetration level is so low that we practically observe
only a few samples for each queue length X. As we show through numerical simulations,
even for high penetration rate the estimation approach proposed above gives satisfactory
performance. Second, this formulation does not account for intersection spillover. If a queue
overflows to the next intersection, we cannot distinguish stopped vehicle samples from the
upstream queue corresponding to the downstream spillover.

5.2 Non-Parametric Estimation

Consider the empirical histogram for fY . Let B = {b0, b1, ..., bK}, b0 = 0, denote the bin
edges and Y = {y1, ..., yK} denote the associated values for the histogram. Assume that
bi+1 − bi = ∆b > 0 for all i. We fit a curve Ŷ = {ŷ1, ..., ŷK} to the empirical distribution
Y ={y1, ..., yK} by solving the following optimization problem.

Let zi :=
yi+1−yi

∆b
, 1 ≤ i < K, denote the slope of the histogram moving from bin i to i + 1.

For the Kth bin, define zK := 0−yK
∆b

, i.e. set yK+1 = 0. Then we can write yi = −∆b
∑K

j=i zj.

Our model requires that zi ≤ 0. Therefore, we estimate a smooth curve Ŷ = {ŷ1, · · · , ŷK},
parameterized by its slope Ẑ = {ẑ1, · · · , ẑK}, by solving the following optimization problem:
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min
K∑
i=1

∥yi − ŷi∥22 + β
K−1∑
i=1

∥ẑi+1 − ẑi∥2 (5.3)

subject to

ẑi ≤ 0, (5.4)

ŷi = −∆b
K∑
j=i

ẑj, (5.5)

∆b
K∑
j=1

ŷi = 1 (5.6)

Here we explicitly require the fitted curve to satisfy the monotonicity condition of our model
by (5.4). Our fit of the empirical distribution, Ŷ must also be a distribution and sum to 1
by (5.6)

The first term in the objective function denotes the estimation error, while the second term
penalizes high variations in the slope of the fitted curve to ensure a smooth curve. As such,
parameter β controls the trade-off between estimation error and smoothness of the curve.
We note that {ẑ1∆b, 2ẑ2∆b, ...,KẑK∆b} gives us the estimate of fX at bin edges x =
{b1, b2, · · · , bK} via (5.2). The optimization problem above can be written as a quadratic
program (QP),

min ẑTP ẑ + qT ẑ

subject to

Gẑ ≤ h

Cẑ = 1,

where P, q,G, h, C are defined as follows:
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P = ATA+ βDTD,

G = IN×N ,

h = [0, 0, · · · , 0]T ,

q = −2AT [y1, y2, · · · , yN ]T ,

A = −∆b


1 1 · · · 1 1 1

0 1 · · · 1 1 1
...

...
. . .

...
...

...

0 0 · · · 0 1 1

0 0 · · · 0 0 1

 ,

D =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

0 0 0 0 0 −1

 ,

C = [1, 1, · · · , 1]A

Figure 5.2 demonstrates the resulting estimated Ŷ density from enforcing smoothness and
monotonicity on an empirical distribution of measured queue lengths.

Figure 5.2: Resulting QP fit of a smooth monotone distribution to a taken empirical distri-
bution
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5.3 Parametric Estimation

Below, we consider an alternative approach by making an assumption about the family of
the distribution for the queue length. We assume that vehicle arrivals to the intersection
follows a non-homogeneous Poisson Process [66] . Let λ(t) denote the arrival rate to the
intersection at time t. Assuming that the duration of red phase is Tred, the maximum
number of cars N in the queue at the end of red phase is a Poisson random variable with
parameter λQ(t) :=

∫ t+Tred

t
λ(τ)dτ [60]. We assume that the traffic pattern is similar during

the morning peak. As such λQ(t) is similar for all cycles during 7-11AM; we denote the
average value of it by λQ.

We note that the realized queue length for each cycle would be still different even if we
assume that λQ(t) is the same during 7-11AM; they correspond to different realizations of
Poisson(λQ).

Assuming that queue length is Poisson(λQ), the average queue length is λQ. In Section 5.4,
we present the estimation algorithm for average queue length. Therefore, a model-based
estimation for probability distribution of queue length is given by Poisson(λ̂Q), where λ̂Q

denotes the estimated average queue length.

5.4 Average Queue Length

One can estimate the expected queue length E{X} using the estimated distribution for
fX . However, we show below that E{X} can be estimated directly from data, without first
estimating fX ; as such, it may have the advantage of avoiding the approximation errors
arising in solving the QP.

For the expected queue length E{X} we have,

E{X} =

∫ ∞

0

xfX(x)dx =

∫ ∞

0

−x2fY (x)

dx
dx

= −x2fY (x)
∣∣∞
0
+ 2

∫ ∞

0

xfY (x)dx = 2E{Y }. (5.7)

We note that the confidence bounds for E{X} is twice the confidence bounds for E{Y }.
Therefore, 95% confidence interval for the average queue length can by computed as 2Y ±

1.96
#observations

sY where Y and sY denote the empirical mean and standard deviation for Y .
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5.5 Numerical Simulation

We numerically evaluate the ability of our proposed non-parametric algorithm to recover the
true distribution of queue length fX(x). The simulation setup is as follows.

We consider queue lengths during morning peak hours 7-11 AM on working days for one
month at an intersection. Let λ(t) denote the average arrival rate to the intersection at time t.
Assuming that the duration of red phase is Tred, the maximum number of cars N in the queue
at the end of red phase is a Poisson random variable with parameter λQ(t) :=

∫ t+Tred

t
λ(τ)dτ .

We assume that the traffic pattern is similar during the morning peaks. As such λQ(t) is
similar for all cycles during 7-11AM; we denote its average value by λQ. We note that the
realized queue length for each cycle would be still different even if we assume that λQ(t) is
the same during 7-11AM; they correspond to different realizations of Poisson(λQ). For our
simulation, we set λQ = 15 and assume that N ∼ Poisson(15) for each cycle. Moreover, each
traffic cycle lasts 120 (s).

Figure 5.3: Numerical simulation for the distribution of queue - length X (in meters) vs
8 (m)×N (number of cars).

Now consider a queue of vehicles at the end of a red phase. The distance between every two
consecutive vehicles in the queue di, 1 ≤ i ≤ N is random. We assume that this distance
is on average 8 (m) (including one vehicle length) and set di ∼ U [8 − 2 (m), 8 + 2 (m)];
that is, each distance di may deviate from 8 (m) by up to 2 (m). Accordingly, given a
realization for the number of cars in the queue N , we simulate the length of the queue in
meters by assuming that the distance between successive cars is U [8 − 2 (m), 8 + 2 (m)].
Figure 5.3 shows the empirical distribution for queue length X (in meters). We would like
to point out that the randomness in car distances di, makes the distribution fX(x) slightly
different from fN([x/8]). Most importantly, fX(x) (queue length in meters) is a continuous
distribution while fN(n), where n = [x/8] (number of queued cars), is a discrete distribution.
Additionally, fX is slightly left skewed compared to fN .

For the numerical simulation, we consider three penetration levels for connected vehicles
α ∈ {0.5%, 1.5%, 5%}. Figures 5.4-5.6 depict the estimated probability distribution for queue
length (in meters) f̂X , and compares them with the true distributions fX and fN . Moreover,
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the estimated average queue length for each case {0.5% : 111.4 (m), 1.5% : 117.4 (m), 5% :
122.0(m)}, along with the confidence bounds, are compared against the true sample average
of queue lengths at 120.5 (m). As it can be seen, the estimation accuracy is satisfactory
even for very low penetration α = 0.5%. Additionally, the estimation accuracy for both the
average queue length and the probability distribution improves as the penetration rate α
increases from 0.5% to 1.5%, and 5%.

Figure 5.4: Numerical simulation for pene-
tration rate α = 0.5%

Figure 5.5: Numerical simulation for pene-
tration rate α = 1.5%

Figure 5.6: Numerical simulation for pene-
tration rate α = 5%

Figure 5.7: Numerical simulation - the es-
timation error for queue length percentiles
F−1
X

A particular value that is critical in both performance evaluation and the design of timing
plan at intersections is the the queue length at specific quantiles (e.g. 95%). Figure 5.7 shows
the estimation error vs. quantiles. We note that the estimation error for quantiles above
60% is always less than two times the average distance between queued vehicles. Moreover,
this error is comparable to the distance between the two distribution Fx (queue length in
meters) and FN (queue length in number of vehicles × average vehicle length) which describe
the true queue length distribution in two different ways
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5.6 Empirical Verification - Comparison with

Detector Data

We demonstrate the implementation of our approach for intersections on CA-107 corridor
using real data. We present the results for three signalized intersections with different char-
acteristics: (i) Lomita Blvd & CA-107 is a major intersection with one left-turn lane, four
through lanes, and no dedicated right-turn lane; (ii) Torrance Blvd & CA-107 is a major
intersection with two left-turn lanes, four through lanes, and one right-turn lane; (iii) Tal-
isman St & CA-107 is an intersection located in front of an outlet, with one left-turn lane,
four through lanes, and one-right turn lane leading to the outlet. To empirically verify the
result of our approach, we estimate the queue length using vehicle detection sensors located
at the downstream of the intersection links as well and compare the results.

We adopt the estimation algorithm proposed in [32] based on shock-wave theory. The key
idea used in the algorithm is that the discharge rate for vehicles in the queue, which is
observed via sensors at the downstream of the intersection, is higher than the normal free
flow of vehicles when there is no queue. As such, one can determine the time gap between
consecutive vehicle detections at the downstream, and identify the time instance where the
queue is cleared, and thereby estimate the number of cars in the queue.

To determine the end of the queue, we identify the first time (skipping the first vehicle in
the green phase) the detection gap exceeds a given a threshold max gap.We choose the value
of max gap based the nominal time gap between consecutive vehicles leaving the queue.

We estimate the nominal gap between detections of two vehicles leaving the queue to be
approximately 3(s). This is based on our estimate of 14.5−20(km/h) for how fast the shock-
wave of vehicles clearing the queue propagates backward into the intersection upstream. See
our note in [49] for the detailed calculation of 14.5(km/h) using drone footage. Later chapter
computes upwards of 20 (km/h) from connected vehicle traces. Assuming that the average
distance (including a vehicle length) between two queued vehicles is 8 (m), vehicles leave
the queue with ∼ 2 (s) time gaps. Additionally, for each two consecutive vehicles, the rear
vehicle has to travel the additional distance of 8 (m) to reach the location of the detectors,
which takes ∼ 1 (s) assuming an average speed of 30 (km/h). The setting of max gap and
average distance can change the estimated queue distribution. Increasing max gap will skew
the distribution towards the right and increasing distance per vehicle stretches it out. We
found that the parameters of 9(m) average distance at a max gap of 6(s) most closely aligned
with the results from connected vehicle estimation. These are not unreasonable numbers.
Figure 5.9 illustrates how different max gap numbers changed the estimated queue length
from the detectors.

Aside from the sensitivity to these parameters, this estimation from detectors has a few more
drawbacks. Identifying the end of the queue is sensitive to drivers’ delays and distractions.
That is, if a driver starts moving with some delay after the front vehicle leaves the queue, the
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Figure 5.8: Illustrating detection of queue discharge from max gap data.

recorded time gap between the two vehicles can exceed the max gap threshold. As a result,
we may underestimate the queue length for that cycle. Further, the traffic signals on CA-107
are actuated, and thus, the phase lengths vary slightly from cycle to cycle. Unfortunately,
the realized phase lengths and cycle timing are not recorded and cannot incorporated in our
estimation algorithm based on detections. As a result, we develop an algorithm to estimate
the timing of the green phase based on the vehicle detection data on all four links of the
intersections.

Figure 5.9: Distribution estimations from detector data with varying max gap parameters.

Figure 5.10 depicts an example of the estimated queue lengths for lane 2 during the morning
peak 7-11AM on September 12, 2019, using the detection data.

Results & Comparison

We implement the proposed estimation algorithm based on connected vehicles for three
intersections on CA-107 and compare the results with those based on detector data.
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Figure 5.10: Queue Estimations during morning on Lomita.

We set β = 150 and utilize the dataset during morning-peak (7-11AM) of business days in
September, 2019, consisting of approximately 2000 traffic cycles. We make the comparison
only for lane 2 of NB direction at each intersection; we note that vehicles queuing in lane
1 (left-most lane) and lane 4 (right-most lane) may end up turning at the intersection, and
thus do not end up being detected by the in-ground detection sensors at the outflows of the
intersections.

Figure 5.11 depicts the estimated probability distribution as well as the average queue length
using our non-parametric and parametric estimation algorithms. We note that the non-
parametric estimation and average queue length are very close to the results using the in-
ground detection sensors. Notably, the difference in the average queue length is less than
or equal to an average distance between queued vehicles at 9 : /(m). Granted 9 was chosen
to give a good match between the distribution estimates it is a reasonable value. Note the
Poisson parametric estimation did not perform as the detector distributions are clearly not
Poisson.

Figure 5.12 shows the difference between estimated percentiles F−1
X using connected vehicles

vs. detection sensors. As can be seen, the difference in queue length percentiles for 90%-98%
is less than or equal to twice the average distance between two queued vehicle for the non-
parametric estimation. Hence the empirical results suggest that the estimation method we
propose in this paper can generate information about queue lengths that is accurate enough
for both performance monitoring and the design of time-of-day traffic cycle plans.

5.7 Additional Discussion & Conclusion

The simulation and empirical results demonstrate the effectiveness of the estimation algo-
rithm we propose based on trace data from CV with very low penetration levels. A major
advantage of estimation from trace data is the full coverage it provides at all intersections
without any hardware equipment and traffic interruption for their installation and mainte-
nance. Additionally, it has negligible marginal costs since the trace data is being collected by



CHAPTER 5. QUEUE LENGTH ESTIMATION 53

Figure 5.11: Estimated queue length distribution on lane 2 (NB) for intersections on CA-107
from connected vehicles with α ≃ 3% vs. queue length estimation from in-ground vehicle
detection sensors.
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Figure 5.12: The difference between estimated queue length percentiles F−1
X using connected

vehicles vs detectors.

various OEMs. As such, our algorithm can already be utilized to monitor the performance
of intersections across the road network, and to estimate the queue lengths necessary for the
design and optimization of time-of-day traffic cycle plans for each intersection.

The main disadvantage of this approach is its limited ability to provide accurate real-time
queue length measurements for each cycle individually. However, the existing algorithms for
cycle-by-cycle estimation of queue length rely heavily on the assumption that they observe
at least one CV in each cycle. At a penetration rate of ∼ 3% with an average queue length
of 15 cars, we do not observe any CV in 60% of cycles. A recent work by [47] suggests to
address such an issue by utilizing information from historical trends. As such, our estimation
algorithm can provide information to estimate such recent historical trends. Specifically, one
can use our algorithm to estimate the distribution and/or average queue length during a
narrower recent window of time (e.g. past few hours) in order to be used in such a hybrid
scheme as suggested in [47].

Moreover, we argue that during peak hours when the traffic flow tends to be more predictable,
the performance of a well-optimized time-of-day traffic cycle plan is as good as an adaptive
traffic cycle control. The authors in [15] found that in fact that the time-of-day traffic cycle
plan performs better than the adaptive traffic cycle control for a test site in Anaheim, CA,
which is located only 35-40 km away from the intersections on CA-107. While we do not aim
to provide a similar detailed comparison as in [15] here, we investigate the correlation among
consecutive queue lengths as a proxy for the potential value of adaptive traffic cycle control.
We note that currently, all intersection on CA-107 employs a coordinated actuated time-
of-day cycle plan. Figure ?? shows the auto-correlation among consecutive queue lengths
(estimated from detection sensors) at CA-107 & Lomita Blvd intersections. As it can be
seen, the realized queue length at the end of each cycle includes very limited additional
information about the queue lengths and traffic during the next few cycles, beyond the
information already contained in the historical distribution. This suggests that the use of
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Figure 5.13: Auto-Correlation of consecutive Queue Lengths

adaptive traffic cycle has potentially very limited positive impact on the performance of the
traffic signals during peak hours with normal traffic patterns that do not deviate significantly
from the historical distribution.
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Chapter 6

Macroscopic Properties from Timed
Intersections

The work of Daganzo and Geroliminis in [20] [4] [23] [24]. proposed and analyzed the
existence of a macroscopic fundamental diagram (MFD). An strong relationship between
the average flow, average density, and average speed arises from an aggregated network.
This relationship is an inherent to the network and time invariant given the network does
not change and signal timing remains constant. From the first proposal a large body of
research was conducted finding conditions for an MFD’s existence, searching for them in
traffic, analyzing what factors affect the MFD, and applying MFDs to traffic control.

Connected vehicle data has a large potential for studying macroscopic fundamental diagrams.
In [37] measures for network flow and density from probe vehicle data are proposed with
analytical variances. Multiple penetration rates are tested on simulated data and compare
observed MFDs. From simulations they conclude that a penetration rate of 20% is need for
an accurate measurement. At a 2% penetration rate, we explore what is available with our
current level of data.

6.1 Problems with Sparsity

With a low penetration rate, measures of traffic have high variances as seen in Chapter
3. Plotting flow and density values measured from this sparse set, smears the macroscopic
fundamental diagram and makes it difficult to understand the state of the network. Figure
6.2 plots all the trajectories for one hour going northbound on 19th avenue. On its own, we
can see a transition from congestion in the upper half at 4pm to free flow after 4:10pm, but
the overall state is not very clear.

We chose 19th Avenue as a corridor of study because it has favorable properties for the
existence of a Macroscopic Fundamental Diagram. The road is straight with a constant 3
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Figure 6.1: San Francisco,
Upper 19th Avenue (CA-1)
Map

Figure 6.2: All captured northbound trips on upper
19th from 4-5pm, 9/5/2021

lanes. For long periods of time the signals appear to have set timing cycles all synchronized
to each other (Note: There may be some adaptive timing of the signals but it is evident
that there is at least a consistent average cycle time where signals re-synchronize). Distance
between the signalized intersections is consistent at about 200m and left turns are banned
for smoother flow. The road is also a major through-way for CA-1 and thus experiences high
flow and consistent cycles of congestion. Further their exists a PEMS detector just north of
the last intersection giving us a highly correlated measurement of the penetration rate.

6.2 Aligning Trajectories

To get a clearer spacetime diagram of traffic states we align the trajectories to their time
within a cycle. With a cycle length of c seconds and a sample’s time in seconds from midnight
tk, the time within the cycle τk for sample k is calculated simply.

τk = tk mod c

For this upper leg of 19th Avenue there exists two weekday cycle settings that experience
congestion. From 9:45am - 3:00pm the cycle is set to 80 seconds. From 3:15pm - 7pm
the cycle is set to 90 seconds. (We skip the intermediary period where the cycles switch
settings) Figure 6.3 shows the result of plotting all the aligned northbound trajectories from
weekdays, 3:15pm- 7pm, September 2021. The same 90 second spacetime diagram is copied
and translated by 90 seconds for clarity.

From Figure 6.3 the backwards propagation of queue discharge is clearly seen. To get a
measurement of the discharge shockwave velocity we plot the samples of vehicles right before
they are seen moving again. Figure 6.4 plots these samples along with linear estimations of
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Figure 6.3: Aligned NB 19th Avenue trajectories for weekdays, 3:15pm - 7pm

the shockwaves. We see that there is a bit of spread where exactly the queue begins moving.
This can be due to the variable delays of drivers or possible adaptive timing lengthening or
shortening the stop cycle. We estimate the discharge rate by fitting to the outside envelope.
Estimates range from -19 to -22 km/hr with the average estimate at -20 km/hr.

Figure 6.4: Stopped samples of vehicles before moving again along with estimated discharge
shockwaves.
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6.3 Clustering Time Intervals

We want to be cluster time intervals that exhibit the similar congestion patterns. If traffic
patterns are fairly repeatable throughout the month then aligned trajectories within the
same pattern should produce a clearer picture. Using this idea we separate time intervals
based off how trajectories within the interval compare to the average spacetime diagram.

Let G = {(dk, tk, τk, xk, vk)} be the set of samples in a grouping we want to split. dk is the
date of sample k, dk is the date, tk is the timestamp in seconds from midnight, τk is the time
within a cycle as defined above, xt is the position in meters along the road, and vk is the
velocity. We start with G0 as the set of all samples falling within the cycle time of study. G0

is the set of all weekday samples between the times of 5:15pm and 9:00pm with a cycletime
of 90s.

First we discretize the spacetime for the length of upper 19th and time in a cycle. Define
ik = τk/τdiv and jk = xk/xdiv. i and j are the discretized time and position within the
spacetime diagram. We use τdiv = 1 and xdiv = 5. Let Kij be the set of all samples that fall
within pixel (i,j). Then the average velocity and standard deviation of each pixel is defined
as:

V̄ (i, j) =

∑
k∈Kij

vk

|Kij|

Σ(i, j) =

(∑
k∈Kij

(vk − V̄ (i, j))2

|Kij|

)−1/2

For each sample in a group we assign a score:

sk = (vk − V̄ (ik, jk))
Σ(ik, jk)

1 + V̄ (ik, jk)

Scores are based on how much they differ from the mean speed of samples in the same pixel.
We multiply by the standard deviation of the pixel to prioritize splitting where there is a
high variance in speed. We also scale by 1 plus the mean speed of the pixel to give higher
weight locations where vehicles have low velocity. This is because there is higher variance
from vehicle to vehicle in there acceleration and desired speed. However when they are forced
to queue that variation between actors decreases.

A time interval is scored by the total sum of sample scores within its interval. If an interval’s
score is positive it is split right, negative split left. This process is repeated as illustrated in
Figure 6.5 separating out intervals into different groupings.
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Figure 6.5: Binary splitting of time intervals into groups with similar traffic patterns

Figure 6.6 shows the results of separating out 15 minute intervals. We could continue splitting
up clusters of into separate groups but there are a limited number of intervals for 1 month
of measurement. We wanted enough samples in each group for density and flow measures.

Figure 6.6: Results of separating groups of similar traffic patterns.

By examining sections of the space time diagram where spillback for intersections occur, we
can get a rough estimation of the probability of spillback from each intersection for each
grouping. We look at the area 100m back from the start of the preceding intersection and
divide the number of vehicles that are observed to stop by the total number of vehicles that
pass. Figure 6.7 plots the calculated probabilities starting with the most north intersection.
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Figure 6.7: Calculated spillback probability for each intersection and grouping.

6.4 Estimating Macroscopic Properties

The generalized definitions for network flow - q, and network density - k are defined in [21].

q =

∑
i di

LT

k =

∑
i ti

LT

Here, T is the total time of measurement, L is the total distance of the network. di is the
the distance traveled by trip i in the network for the time of measurement. ti is the total
time trip i spends in the network. This also produces a generalize velocity of the network,
which is the total vehicle distance covered divided by the total vehicle time.

v =
q

k
=

∑
i di∑
i ti

To estimate traffic density and traffic flow from connected vehicle data we use the approxi-
mations proposed by [37]. They use the total sums from their probe vehicle sets and divide
by the penetration rate α.

q̂ =

∑
j∈D dj

αLT

k̂ =

∑
j∈D tj

αLT
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Just north of the last intersection there is a PEMS sensor where we can obtain penetration
rates in close proximity to the corridor of interest. We use the calculated time of day
penetration rates for the month. The macroscopic flow, density, and velocity values for
upper 19th Avenue were calculated for each 15 minute interval from 5:15pm - 7pm, Weekdays
Figures 6.8, 6.9, and 6.10 illustrate the spread of values for each of the groups.

Figure 6.8: Average flow of separated 15
minute intervals.

Figure 6.9: Average density of separated 15
minute intervals.

Figure 6.10: Average velocity of separated 15 minute intervals

We’d like to note that a similar cluster separation can be performed by simply bisecting by
the observed average speed. However this creates disjoint sets of average speed where the
scoring method described has overlapping average speeds among 2 or more groups. This is
seen in 6.10 where the distributions clearly overlap. The scoring method may produce better
representations of the different states. Overlapping is expected with the high variance of
flow and density values.

To understand the variance in measurements assume, for each group, the density measure-
ment is a constant k̄g. Then the sample sample set will see a density

αk̄g =
ˆ̄kg =

∑
j∈D tj

LT
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Note this is the measured density of the connected vehicle sample set (i.e. no penetration
rate scaling)

If the total network density is constant for each group k̄g, and α ∼ N (µα, σα) then we would
expect the density of sampled vehicles to be

ˆ̄kg ∼ N (k̄gµα, k̄
2
gσ

2
α)

Figure 6.11 shows the histogram of penetration rates for September 2021, Weekdays, 5-7pm.

Figure 6.11: Histogram of Hwy 1 penetration rates for Weekdays, 5-7pm

We don’t have enough samples from each group to compare probability densities, however
we can compare the empirical variance vs the expected variance given k̄g is the average

of the approximated network densities k̂g. Similar comparisons can also be done with the
flow measurements. Figure 6.11 shows the histogram of penetration rates for September
2021, Weekdays, 5-7pm. From the estimated normal distribution of the penetration rate we
compute the expected variance. Figure 6.12 compares the expected standard deviation to
the standard deviation for flow and density measurements seen in the sample set.

From the similar standard deviations measured from the CV set and predicted from the
penetration rate, we can argue that the spread of flow and density values in each group is
mainly a result of the variability in the penetration rate.

6.5 Macroscopic Fundamental Diagrams

By plotting the macroscopic flow versus density a concave fundamental diagram should be
evident for this corridor. Figure 6.13 shows the resulting scatter plot from plotting all 15
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Figure 6.12: Comparing the standard deviation of sample density and flow vs. the standard
deviation of the penetration rate

minute intervals from weekdays 5:15p-7p.

We see that the variance in the measurements smears out the scatter and makes for a hardly
discernible macroscopic fundamental diagram. To deal with some of the variability we apply
a windowed moving average to the flow and density signals. We use the same window
discussed in Chapter 3 on penetration rates. This consolidates the scatter considerably and
the MFD becomes much more clear.

Plotting each group’s average shows the trend.

Similar analysis is performed for the morning/afternoon cycles set at 80 seconds. Plotting
the two MFD’s allows us to compare the effects of cycle time on the MFD. Figure ?? shows
the comparison of the two cycletimes. The plot reveals a slight reduction in road capacity
from the reduced cycle length.

The lower portion of the 19th avenue (mapped on Figure 6.15 also exhibits similar properties
as the upper portion that create good conditions for a MFD. This collection of intersections
have a 90 second cycletime from 6:00am- 10:45am and a 100 second cycletime from 11:00am
- 8:00pm on weekdays. Figure 6.16 illustrates the results of grouping the 100 second cycles.

Figure 6.17 plots the resulting MFDs for the two cycletimes. The same reduction in capacity
seen in the upper portion is visible here in the reduction from 100 second to 90 second cycles.

6.6 Discussion

Even at low penetration rate, there is a wealth of information on the MFD and state evolution
of the traffic network. From the large scatter we can filter out a measurable change in
capacity resulting from the change in signal timing. Further work would explore the MFD
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Figure 6.13: Macroscopic Diagram for northbound upper 19th Avenue with a cycletime of
90 seconds.

Figure 6.14: Comparison of Macroscopic Diagrams for northbound upper 19th. Comparing
cycletimes of 80 and 90 seconds.

of the surrounding streets flowing into 19th and how their states are coupled.
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Figure 6.15: Map of lower portion of 19th Avenue.

Figure 6.16: Spacetime clusters for lower 19th Avenue 100 second cycletimes
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Figure 6.17: MFD comparisons for northbound on lower 19th Avenue. Compares 90 second
vs 100 second cycletimes.
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Chapter 7

Maneuvers and Risk

At 36,000 driving related deaths in 2018, improvements to traffic safety are a major area
of research and investment[2]. Large investments have been made towards the development
of autonomous vehicles (AVs) with hopes to remove human drivers from the equation and
reduce the number of traffic deaths to zero. However, driving is an inherently risky task,
where the risks involved are not unique to human drivers [59].

A common metric for evaluating the safety performance of AVs is the total miles driven. Here
the goal for AVs is to out scale humans on the number of miles driven without incident. This
metric is shown to be infeasible in achieving a statistically significant measure of reliability
for AVs [41]. Also, it does not address many of the nuanced risks associated with driving. For
example, 7% of crashes involve left turns but left turns make up a much smaller percentage
of total driving time [46]. Left turns are a much higher risk maneuver.

In [43] a metric for evaluating maneuver-level crash risk on the roads. This metric can be
used to serve as a baseline for judging AVs driving. it also provides the means for calculating
more risk averse pathing. Further, by comparing maneuver level risk over an area, we can
highlight locations of elevated risk to further understand the factors that increase risk.

The work in originally evaluated maneuver-level risk using the September 2019 trace dataset
for LA corridors. Here we expand on that work to view the wider SF area.

7.1 Maneuver-Level Crash Risk

We use the model introduced in [43]. The total number crashes involving a maneuver at an
intersection, Ci

m, is modeled as a binomial random variable parameterized by the number of
executions of that maneuver, N i

m and the inherent probability of an accident involving that
maneuver, pim.

Ci
m ∼ Bin(N i

m, p
i
m)
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Thus the maximum likelihood estimation of pim is the simply,

p̂im =
Ci

m

N i
m

7.2 Maneuver-Level Data

For these estimates we need data on the number of crashes involving that maneuver and the
number of maneuvers taken.

To get the number of accidents per intersection we utilize the Transportation Injury Mapping
System (TIMS) [52]. From the database we can extract data from the years 2011-2020 and
filter out intersection accidents involving the maneuver of interest.

Accidents are relatively infrequent for each intersection. The maximum number of crashes
for 1 intersection is only 63 over the 10 years of data. This means we have to consider data
over a large time frame to get significant values for the number of crashes. This also means
that the crash data and maneuver data from our cv samples are from different years.

To address this we bin the number of accidents in SF by traffic analysis zone (TAZ). We
then plot the number of accidents before 2016 vs after 2016 for each TAZ.

Figure 7.1 shows that there is a strong correlation of accidents to location. The number of
accidents per TAZ is consistent across the two 5 year periods.

From the connected vehicle trace data we can extract maneuvers taken by each vehicle for
each intersection they cross. A map snapping algorithm was used to snap GPS traces to a
network path and extract the maneuvers. Total counts of maneuvers are scaled by a flat
penetration rate of 2% for the entire city. This rough estimate is okay as we could only
reasonably expect evaluations close in order of magnitude. Total counts for the total survey
time of 32 days are evaluated for an average hourly rate and extrapolated to expected totals
over the course of 10 years.

7.3 Results

For risk estimates we apply some light filtering of the data to reduce outliers.

First, we only calculate maneuver level risk for intersections that experience 2 or more crashes
involving that maneuver. We can reason that there is a baseline risk across the city and so
some intersections around the baseline will have an accident occur. However because of the
infrequency that single sample may skew the risk estimate for the intersection.

Second, we only evaluate intersections where flow rates for specific maneuvers are high. This
is done because of the low penetration rate of the dataset. We have to consider locations
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Figure 7.1: Number of accidents before 2016 vs number of accidents after 2016

of high flow rate to consider the sample set representative. We cut off intersections at less
than 65 maneuvers per hour.

Tables 7.1, 7.2, 7.3, show the evaluations of the top 5 intersections with the highest risk
for each maneuver. Figures 7.2,7.3, and 7.4 map the results of these risk calculations. The
left side map of the figure compares the total number of maneuver type crashes across
intersections. The larger dot indicates more crashes relative to each other. The right side
map compares the calculated risk for that maneuver across intersections. Large dots indicate
higher relative risk.

7.4 Discussion

With the probabilities calculated the total risk of a particular path can be estimated by the
sum total of risks for each maneuver taken on the path. This could be used to evaluate
the risk of paths already traveled by AVs. We can also optimize travel between origin and
destination to choose the path of least risk. Further we can study areas in the city that are
the most difficult to travel too and areas that are most difficult to travel from. With more
than a month of data, we could get more reliable data for intersections with low flow and
more representative sample for maneuver rates across the city. Particularly, intersections
with low flow for a maneuver but high number of crashes would reveal a high crash risk.
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Through Risk

OSM ID Thru Crash Probability Lower 95% CI Upper 95% CI Thru Crashes Thru Rate (num/hr)

65313131 2.2E-06 1.6E-06 3.0E-06 44 225.7

65326744 1.9E-06 1.2E-06 2.9E-06 22 132.0

65334878 1.6E-06 9.5E-07 2.6E-06 16 114.2

65342049 1.5E-06 9.5E-07 2.3E-06 20 151.4

65308264 1.4E-06 6.9E-07 2.5E-06 10 83.7

Table 7.1: Top 5 intersections for through risk

Through Risk

Total Through Crashes Through Risk

Figure 7.2: Comparison of total through crashes (left) and through crash risk (right)
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Left Risk

OSM ID LT Crash Probability Lower 95% CI Upper 95% CI LT Crashes LT Rate (num/hr)

65317399 2.4E-06 1.4E-06 4.0E-06 14 67.3

65296837 2.3E-06 1.4E-06 3.8E-06 15 73.3

65306810 2.3E-06 1.3E-06 3.9E-06 14 68.8

65317572 2.0E-06 1.1E-06 3.4E-06 13 75.4

65317045 1.9E-06 1.1E-06 3.3E-06 13 77.3

Table 7.2: Top 5 intersections for left-turn risk

Left Risk

Total LT Crashes LT Risk

Figure 7.3: Comparison of total left-turn crashes (left) and left-turn crash risk (right)
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Right Risk

OSM ID RT Crash Probability Lower 95% CI Upper 95% CI RT Crashes RT Rate (num/hr)

65363166 1.1E-06 5.4E-07 2.1E-06 9 93.4

65310823 1.0E-06 4.5E-07 2.1E-06 7 77.9

65303696 8.0E-07 3.2E-07 1.7E-06 6 85.7

65352330 6.9E-07 2.5E-07 1.6E-06 5 82.4

295083424 6.9E-07 2.8E-07 1.5E-06 6 99.8

Table 7.3: Top 5 intersections for right-turn risk

Right Turn Risk

Total RT Crashes RT Risk

Figure 7.4: Comparison of total right-turn crashes (left) and right-turn crash risk (right)
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Chapter 8

Concluding Remarks

There is large potential for connected vehicle data to improve measurement and understand-
ing of the traffic network. This work exemplifies that even at low penetration rates there
is a wealth of information readily available. The level of detail is set to improve as more
vehicles on the road adapt the technology. This work only scratches the surface of potential
applications. It will be exciting to see traffic design improvements and the implementation
of real-time network estimation and control based off this technology.
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